2024

  1. Deciphering the Interplay of Parametric and Non-parametric Memory in Retrieval-augmented Language Models
    Mehrdad Farahani, and Richard Johansson
    In Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, Nov 2024
  2. Fact Recall, Heuristics or Pure Guesswork? Precise Interpretations of Language Models for Fact Completion
    Denitsa Saynova, Lovisa Hagström, Moa Johansson, Richard Johansson, and Marco Kuhlmann
    arXiv preprint arXiv:2410.14405, Nov 2024
  3. Can Large Language Models (or Humans) Disentangle Text?
    Nicolas Audinet Pieuchon, Adel Daoud, Connor Jerzak, Moa Johansson, and Richard Johansson
    In Proceedings of the 6th Workshop on Natural Language Processing and Computational Social Science (NLP+CSS), Nov 2024
  4. What Happens to a Dataset Transformed by a Projection-based Concept Removal Method?
    Richard Johansson
    In Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation, Nov 2024

2023

  1. The Effect of Scaling, Retrieval Augmentation and Form on the Factual Consistency of Language Models
    Lovisa Hagström, Denitsa Saynova, Tobias Norlund, Moa Johansson, and Richard Johansson
    In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, Dec 2023
  2. Surface-Based Retrieval Reduces Perplexity of Retrieval-Augmented Language Models
    Ehsan Doostmohammadi, Tobias Norlund, Marco Kuhlmann, and Richard Johansson
    In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), Jul 2023
  3. On the Generalization Ability of Retrieval-Enhanced Transformers
    Tobias Norlund, Ehsan Doostmohammadi, Richard Johansson, and Marco Kuhlmann
    In Findings of the Association for Computational Linguistics: EACL 2023, May 2023
  4. An Empirical Study of Multitask Learning to Improve Open Domain Dialogue Systems
    Mehrdad Farahani, and Richard Johansson
    In Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), May 2023
  5. Class Explanations: the Role of Domain-Specific Content and Stop Words
    Denitsa Saynova, Bastiaan Bruinsma, Moa Johansson, and Richard Johansson
    In Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), May 2023

2022

  1. Controlling for Stereotypes in Multimodal Language Model Evaluation
    Manuj Malik, and Richard Johansson
    In Proceedings of the Fifth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP, Sep 2022
  2. Coveting Your Neighbor’s Wife: Using Lexical Neighborhoods in Substitution-based Word Sense Disambiguation
    Richard Johansson
    In LIVE and LEARN – Festschrift in honor of Lars Borin, Sep 2022
  3. Cross-modal Transfer Between Vision and Language for Protest Detection
    Ria Raj, Kajsa Andéasson, Tobias Norlund, Richard Johansson, and Aron Lagerberg
    In Proceedings of the 5th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE), Sep 2022
  4. Can We Use Small Models to Investigate Multimodal Fusion Methods?
    Lovisa Hagström, Tobias Norlund, and Richard Johansson
    In Proceedings of the 2022 CLASP Conference on (Dis)embodiment, Sep 2022
  5. Conceptualizing Treatment Leakage in Text-based Causal Inference
    Adel Daoud, Connor Jerzak, and Richard Johansson
    In Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Jul 2022
  6. What do Models Learn From Training on More Than Text? Measuring Visual Commonsense Knowledge
    Lovisa Hagström, and Richard Johansson
    In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop, May 2022
  7. How to Adapt Pre-trained Vision-and-Language Models to a Text-only Input?
    Lovisa Hagström, and Richard Johansson
    In Proceedings of the 29th International Conference on Computational Linguistics (COLING), May 2022
  8. Semi-supervised Learning with Natural Language Processing for Right Ventricle Classification in Echocardiography – a Scalable Approach
    Eva Hagberg, David Hagerman, Richard Johansson, Nasser Hosseini, Jan Liu, Elin Björnsson, Jennifer Alvén, and Ola Hjelmgren
    Computers in Biology and Medicine, May 2022

2021

  1. Transferring Knowledge from Vision to Language: How to Achieve it and how to Measure it?
    Tobias Norlund, Lovisa Hagström, and Richard Johansson
    In Proceedings of the Fourth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP, May 2021
  2. Knowledge Distillation for Swedish NER models: A Search for Performance and Efficiency
    Lovisa Hagström, and Richard Johansson
    In Proceedings of the 23rd Nordic Conference on Computational Linguistics (NoDaLiDa 2021), May 2021